\(x^2, x^{a+b}\)
: \(x^2, x^{a+b}\)
\(x_i, x_{i+1}\)
: \(x_i, x_{i+1}\)
\(A \cdot B \times C\)
: \(A \cdot B \times C\)
\(A \gt B \lt C \ge D \le E = F \ne G \approx H\)
: \(A \gt B \lt C \ge D \le E = F \ne G \approx H\)
\(\frac 1 2 x, \frac {2x} {1 - \frac 1 {x^2}}\)
: \(\frac 1 2 x, \frac {2x} {1 - \frac 1 {x^2}}\)
\(\sqrt{x} + \sqrt[3]{\log_{10}{x}}\)
: \(\sqrt{x} + \sqrt[3]{\log_{10}{x}}\)
\(\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k}\)
: \(\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k}\)
\(\forall k\ge0 \quad \exists n \Leftrightarrow y\notin X\)
: \(\forall k\ge0 \quad \exists n \Leftrightarrow y\notin X\)
\(\angle ABC = 90^{\circ} \Longleftarrow AB \perp BC\)
: \(\angle ABC = 90^{\circ} \Longleftarrow AB \perp BC\)
\[\int\limits_a^b f(x)\,dx \ne \iint \cos{z}\,dxdy\]
: \[\int\limits_a^b f(x),dx \ne \iint \cos{z},dxdy\]
\[\begin{cases} x + 5y = 7 \\ 3x − 2y = 4 \end{cases}\]
: \[\begin{cases} x + 5y = 7 \\ 3x − 2y = 4 \end{cases}\]
Help with mathematical formulas