Mathematical formulas

\(x^2, x^{a+b}\): \(x^2, x^{a+b}\)

\(x_i, x_{i+1}\): \(x_i, x_{i+1}\)

\(A \cdot B \times C\): \(A \cdot B \times C\)

\(A \gt B \lt C \ge D \le E = F \ne G \approx H\): \(A \gt B \lt C \ge D \le E = F \ne G \approx H\)

\(\frac 1 2 x, \frac {2x} {1 - \frac 1 {x^2}}\): \(\frac 1 2 x, \frac {2x} {1 - \frac 1 {x^2}}\)

\(\sqrt{x} + \sqrt[3]{\log_{10}{x}}\): \(\sqrt{x} + \sqrt[3]{\log_{10}{x}}\)

\(\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k}\): \(\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k}\)

\(\forall k\ge0 \quad \exists n \Leftrightarrow y\notin X\): \(\forall k\ge0 \quad \exists n \Leftrightarrow y\notin X\)

\(\angle ABC = 90^{\circ} \Longleftarrow AB \perp BC\): \(\angle ABC = 90^{\circ} \Longleftarrow AB \perp BC\)

\[\int\limits_a^b f(x)\,dx \ne \iint \cos{z}\,dxdy\]: \[\int\limits_a^b f(x),dx \ne \iint \cos{z},dxdy\]

\[\begin{cases} x + 5y = 7 \\ 3x − 2y = 4 \end{cases}\]: \[\begin{cases} x + 5y = 7 \\ 3x − 2y = 4 \end{cases}\]

Help with mathematical formulas


↩ Назад